The Calculus of Natural Logarithms

When \(e\) is the base of a logarithm, it becomes straightforward to derive and integration expressions involving the natural logarithm. Calculus of logarithmic functions that do not have a base of \(e\) are possible by transforming the base into \(e\) using log laws.

Here are the go-to formulas for the calculus of the natural log:

\(\frac{d}{dx} \left( \ln{ \left[ f(x) \right]} \right) = \frac{f'(x)}{f(x)} \)

\(\displaystyle \int{\frac{f'(x)}{f(x)}} \ dx = \ln{(|x|)} + c \)


Proof for the derivative of the natural log


Let \(y = \ln{x} \)

\(\displaystyle \begin{aligned} \frac{dy}{dx} &= \lim_{h \rightarrow 0} {\left[ \frac{\ln{(x+h)} - \ln{x}} {h} \right]} \\[12pt] &= \lim_{h \rightarrow 0} {\left[ \frac{ \ln{( \frac{x+h}{x} )}} {h} \right]} \\[12pt] &= \lim_{h \rightarrow 0} {\left[ \frac{ \ln{( 1+ \frac{h}{x} )}} {h} \right]} \ \ \text{ let } = \frac{h}{x} \\[12pt] &= \lim_{xt \rightarrow 0} {\left[ \frac{ \ln{( 1+ t )}} {tx} \right]} \\[12pt] &= \lim_{xt \rightarrow 0} {\left[ \frac{1}{x} \left( \frac{ \ln{( 1+ t )}} {t} \right) \right]} \\[12pt] &= \frac{1}{x} \times \lim_{t \rightarrow 0} {\left[ \frac{ \ln{( 1+ t )}} {t} \right]} \\[12pt] &= \frac{1}{x} \end{aligned} \)




1) Derive the following

a. \(y = \ln{(2x-4)^3} \)

\(\begin{aligned} \frac{dy}{dx} &= \frac{\left[ (2x-4)^3 \right]'}{(2x-4)^3} \\[5pt] &= \frac{3(2)(2x-4)^2}{(2x-4)^3} \\[5pt] &= \frac{6}{2x-4} \\[5pt] &= \frac{3}{x-2} \end{aligned} \)

b. \(y = \ln{(x+1)(x-1)}\)

\(\begin{aligned} y &= \ln{(x+1)} + \ln{(x-1)} \\[7pt] \frac{dy}{dx} &= \frac{1}{x+1} + \frac{1}{x-1} \\[7pt] &= \frac{x-1}{(x+1)(x-1)} + \frac{x+1}{(x+1)(x-1)} \\[7pt] &= \frac{(x-1)+(x+1)}{(x+1)(x-1)} \\[7pt] &= \frac{2x}{(x+1)(x-1)} \end{aligned} \)

c. \(y = \ln \left[{\frac{x+1}{x^2 +1} } \right]\)

\(\begin{aligned} y &= \ln{(x+1)} - \ln{(x^2+1)} \\[7pt] \frac{dy}{dx} &= \frac{1}{x+1} - \frac{2x}{x^2+1} \\[7pt] &= \frac{x^2+1}{(x+1)(x^2+1)} - \frac{2x(x+1)}{(x^2+1)(x+1)} \\[7pt] &= \frac{x^2+1-2x^2-2x}{(x+1)(x^2+1)} \\[7pt] &= -\frac{x^2+2x-1}{(x+1)(x^2+1)} \end{aligned} \)

2) Calculate the following

a. \(f(x) = \int{tan(2x) \ dx} \)

\(\begin{aligned} f(x) &= \int{\frac{\sin{(2x)}}{\cos{(2x)}} \ dx} \\[5pt] &= -\frac{1}{2} \int{ \frac{-2 \sin(2x)}{\cos{(2x)}} \ dx} \\[5pt] &= -\frac{ \ln{| \cos{(2x)}| } }{2} + c \end{aligned} \)

b. \(f(x) = \int{\frac{e^{2x}}{1-e^{2x}} \ dx} \)

\(\begin{aligned} f(x) &= -\frac{1}{2} \int{\frac{-2e^{2x}}{1-e^{2x}} \ dx} \\[5pt] &= - \frac{\ln{|1-e^{2x}|}}{2} + c \end{aligned} \)

\(\begin{aligned} \text{Let } g(x) &= 1-e^{2x} \\[5pt] g'(x) &= -2e^{2x} \end{aligned} \)

Contact/Owner

This website in its entirety is owned, programmed, developed and made public by Aaron Fonte

If you have any bugs, suggestions or statements to make, I welcome you to contact my public email: fonteaaron@protonmail.com. The site is best viewed on PC.

Remove Ads

There are currently no ads to remove, but from the 19th of Feburary, expect ads on the site. These ads would be removed with a subscription of $2.99 a month.

Forums

Get Excited! We are currently working on a forums page.

This forum is to be considered the second half of this website.

Remember, this site is in insaaaanely early dev, so give me a few months and I'll crack on with it.

The idea is, you use the same account for HSHelp as the forum page. The ad-free subscription especially comes in handy for the forums page - as a means of accessing information and contact to other users without ads bothering you. You would need an account to post threads/comments, but anonymous users may read only.

Dependencies

Special Thanks to the following dependencies of this website:

  • JQuery
  • MathJax
  • MHChem (for MathJax)
  • Google Ads, eventually
  • STRIPE API, eventually
  • Our Users :)